Electroweak Physics and Searches for New Phenomena at CDF

Beate Heinemann, University of Liverpool

- The Tevatron and CDF
- Electroweak Physics
 - W,Z,Wy, Zy, WW Cross Sections
 - W and Top mass
- Searches:
 - Higgs
 - Supersymmetry
 - Z' and Extra Dimensions
- Summary and Outlook

Searches for New Physics: Strategy

- Establish good understanding of data in EWK/QCD physics in Run 2:
 - Backgrounds to new physics searches
 - Indirect sensitivity to New Physics
 - Gain understanding of detector
- 2. Search for as many signatures as possible, involving:
 - High Pt leptons
 - Large imbalance in transverse momentum (e.g. due to neutrino or neutralino)
 - High Et jets
 - High Et photons
 - Rare decays of charm- and bottom-mesons

3. Interpret:

- Provide cross section limits and acceptances (try to be as generic/modelindependent as possible)→ applicable to future models!
- In context of specific models of physics beyond the SM

Tevatron Run II

- Upgrade completed in 2001
- Accelerator:

	√s(TeV)	∆t(ns)	L(cm ⁻² s ⁻¹)
Run I	1.8	3500	2.5×10 ³¹
Run II	1.96	396	1.0×10 ³²

Experiment CDF:

- New tracking systems
- New Time-of-flight detector
- New forward calorimeter
- New RO electronics+trigger
- Many other substantial new components and upgrades

Tevatron Performance

CDF Performance

- -CDF takes high quality data (85%)
- -Initial problems with Silicon operation largely solved
- -Recent problems with tracking drift chamber solved (gain recovered)

Inclusive W cross section

- $W\rightarrow \mu\nu$ and $W\rightarrow e\nu$ signal:
- Backgrounds from jets, Drell-Yan,
 W→τν and cosmic μ's
- Excellent description by MC simulation

Candidate events in 72pb ⁻¹		Estimated background	Acceptance x efficiency
W →ev	31,722	(10.6 ± 0.4)%	(17.9±0.3)%
W→μν	37,574	(4.4 ± 0.8)%	(14.4±0.3)%

$$M_T = \sqrt{E_T(\mathsf{I}) \cdot E_T(v) - p_x(\mathsf{I}) \cdot p_x(v) - p_y(\mathsf{I}) \cdot p_y(v)}$$

- Total inel. pp cross section measurement used for luminosity:
 - error weighted average of CDF and E811: σ =59.3+-2.3 mb at \sqrt{s} =1.8 TeV

W. van Neerven, J. Stirling

NNLO σ =2687+-54 pb

$$\sigma(pp \rightarrow W \rightarrow lv) = 2775 \pm 10(stat) \pm 53 (syst) \pm 167 (lum) pb$$

Z Production Cross Section

- $Z/\gamma^* \rightarrow e^+ e^- \text{ and } Z/\gamma^* \rightarrow \mu^+\mu^-$
- 66 < $m(y y)/GeVc^{-2}$ < 116
- Small backgrounds from jets, Z/W→τ, cosmics μ's:
 - less than 1.5%

Number of events in 72pb ⁻¹		acceptance x efficiency	
$Z/\gamma^* \rightarrow e^+ e$	4242	(22.7+-0.5)%	
$Z/\gamma^* \rightarrow \mu^+\mu^-$	1785	(10.2+-0.3)%	

W. van Neerven, J. Stirling

NNLO $\sigma = 251.3 + -5.0 \text{ pb}$

For $66 < m(|+|-) < 116 GeV/c^2$:

 $\sigma(pp \rightarrow Z/\gamma^* \rightarrow 1^+1^-) = 254.9 \pm 3.3(stat) \pm 4.6 (syst) \pm 15.2 (lum) pb$

W Charge Asymmetry

- Sensitive to derivative of d/u at x≈0.1
- Used by CTEQ and MRST global fits
- Experimentally:
 - Using new forward silicon and calorimeters
 - Precision measurement, i.e. good understanding of systematic errors required

$$A_l(\eta) = \frac{d\sigma(e^+)/d\eta - d\sigma(e^-)/d\eta}{d\sigma(e^+)/d\eta + d\sigma(e^-)/d\eta} \simeq \frac{d(\mathbf{x})}{u(\mathbf{x})}$$

New Run 2 data: two Pt bins

- Et dependence of asymmetry not well modelled by CTEQ6 PDF's (they were fit to the average): will check MRST
- Data provide new PDF constraints

Anomalous Couplings

Anomalous couplings: $\Delta \kappa$, λ $\mu_W = e(1 + \kappa_y + \lambda_y)/2m_W$ $q_W = -e(\kappa_y - \lambda_y)/m_W^2$ Existence of WWy vertex indirectly seen at LEP

LEP results hard to beat but complementary:

- √higher energy
- √WWy vs WWZ

W/Z+y Production

- s-channel diagram:
 - Sensitive to trilinear gauge coupling WWy
 - Not present in SM for Z_{γ}
- Selection
 - W's and Z's as in incl. cross section measurement
 - Photon Et>7 GeV
 - Main background: leading π^{0} 's
- Anomalous couplings:
 - Harder photon Et spectrum

W_{γ} and Z_{γ} : Photon E_{t}

- Wy cross section:
 - CDF Data: 18.1+-3.1 pb
 - NLO(U. Baur):19.3+-1.4 pb
- Zy cross section:
 - CDF Data: 4.6+-0.6 pb
 - NLO(U. Baur): 4.5+-0.3 pb
- Data agree well with SM
- Soon: extract WWy and ZZy couplings

WW Production

Why?

- Never observed at hadron colliders with any significance (run 1: 5 observed / 1.2+-0.3 BG)
- SM test, anomalous copulings
- Higgs -> WW

How?

- WW->IvIv channel best but branching ratio small
- Require
 - 2 leptons (Pt>20 GeV)
 - large Et
 - Njet(Et>15 GeV)=0 to suppre top background

WW: Cross Section Results

	"Dilepton"	"Lepton+track"
WW signal	11.3+-1.3	16.3+-0.4
background	4.8+-0.7	15.1+-0.9
Expected	16.1+-1.6	31.5+-1.0
Observed	17	39
Cross Section	14.3+-5.9	19.4+-6.3

- 2 independent analysis (high purity vs high acceptance)=>Consistent results
- First significant signal: significance>3σ
- Agree with theor. prediction: $\sigma_{NLO} = 12.5 + -0.8 \text{ pb}$ Campbell & Ellis

WW kinematic distributions

- Kinematic properties as expected from SM WW production
- => use the data to constrain new physics

Higgs

The Higgs boson: what do we know?

- Precision measurements of
 - M_w =80.412 ± 0.042 GeV/c²
 - $M_{top} = 178.0 + 4.3$ GeV/c²
- Prediction of higgs boson mass within SM due to loop corrections
 - Most likely value: 114 GeV
- Direct limit (LEP): m_h>114.4 GeV

m_W depends on m_t and m_h

einemann, Universi

W boson and top quark mass

W mass: current error estimated (analyses still "blinded")

Systematic	Electrons (Run 1b)	Muons (Run 1b)
Lepton Energy Scale and Resolution	70 (80)	30 (87)
Recoil Scale and Resolution	50 (37)	50 (35)
Backgrounds	20 (5)	20 (25) CDF RUN II
Statistics	45 (65)	50 (100) PRELIMINARY
Production and Decay Model	30 (30)	30 (30)
Total	105 (110)	85 (140)

- Top and W mass measurements in progress:
 - Expect improvement w.r.t. Run I by winter conferences
 - Major effort on dominant jet energy scale error
 - => reducing now from ≈5-8% to ≈2.5-4% (at E,>40 GeV, larger at lower E,)

top mass:many measurements

Higgs Production and Decay

$H \rightarrow WW^{(*)} \rightarrow |+|-\gamma\gamma$

Higgs mass reconstruction not possible due to two neutrions:

- Dilepton mass lower for h->WW: mass dependent cut
- Employ spin correlations to suppress WW background:
 - > leptons from h \rightarrow WW^(*) \rightarrow l⁺l⁻vv tend to be collinear

$\mathbf{M}_{_{\mathbf{H}}}$	Cut
140 GeV	$M_{_{\it H}} \leq 55.0~{ m GeV}$
150 GeV	$M_{_{\mathit{H}}} \leq 57.5~\mathrm{GeV}$
160 GeV	$M_{_{\mathit{H}}} \leq 62.5~\mathrm{GeV}$
170 GeV	$M_{_{\it H}} \leq 70.0~{ m GeV}$
180 GeV	$M_{_{H}} \leq 80.0 \text{ GeV}$

$H \rightarrow WW^{(*)} \rightarrow |+|-\gamma\gamma$

Similar analysis by DO

DO	ee	e μ	μμ
Observed	2	2	5
Expected	2.7 ±0.4	3.1 ±0.3	5.3 ±0.6

Neither CDF nor DO see any evidence for h production => set upper limit on cross section

g mann g willie

$$\sigma(gg{\rightarrow}H;\,4G) \sim 9 \times \sigma(gg{\rightarrow}H;\,3G)$$

 Expect 0.11 events for 160 GeV SM Higgs with 200/pb

Excluded cross section times Branching Ratio at 95% C.L.

Wh Production: Run 2 data

- Selection:
 - W(→μν or eν)
 - 2 jets: 1 b-tagged
- Search for peak in dijet invariant mass distribution

- No evidence => Cross section limit on
 - Wh->Wbb production
 - Techni-ρ ->Techni-π +W

Summary of SM Higgs Searches

We are trying to close in ... race against LHC: experimental techniques continuously being improved

Higgs Discovery at Tevatron?

MSSM Higgs

- In MSSM the bbA Yukawa coupling grows like tan²β:
 - Larger cross sections
 - Better discovery potential than SM
- Search for final states:
 - A+b+X->bbb+X
 - $A+X->\tau\tau+X$

LO diagrams

S. Willenbrock

MSSM Higgs: A -> ττ

- τ's are tough!
- Select di-τ events:
 - 1 lepton from $\tau \rightarrow lvv$
 - 1 hadronic τ-decay (narrow jet)
- Efficiency ≈1%
- Background: mostly Z->ττ

MSSM Higgs A-> ττ

- Fit "visible" mass: from leptons, tau's and E_{t}
- Limit on σxBR≈10-2 pb
- Interpretation soon in $tan\beta$ vs m_A plane

SUSY Searches

- mSUGRA inspired
 - Neutralino LSP
 - \blacksquare Typical signature: $\not\!\! E_t$
 - Best:
 - Neutralino-chargino production (not yet beating LEP)
 - Squarks: large cross sections
 - Here: stop, sbottom, B_s->μμ
- GMSB inspired:
 - Gravitino LSP
 - Here: Neutralino (NLSP)->Gy
 - \blacksquare 2 photons + \cancel{E}_{t} + X

Bottom Squarks

- High tanβ scenario:
 - Sbottom could be "light"
- This analysis:
 - Gluino rather light: 200-300 GeV
 - BR(\widetilde{g} -> \widetilde{b} b)~100% assumed
- Spectacular signature:
 - 4 b-quarks + 月₁
- Require b-jets and E_t>80 GeV

Expect: 2.6±0.7

Observe: 4

Exclude new parameter space in gluino vs. sbottom mass plane

Light Stop-Quark: Motivation

- If stop is light: decay only via $t \rightarrow c\chi_1^0$
- E.g. consistent with relic_ density from WMAP data
 - hep-ph/0403224 (Balazs, Carena, Wagner)
 - $\Omega_{CDM} = 0.11 + -0.02$
 - M(†)-M(χ₁⁰)≈15-30 GeV
- Search for 2 charm-jets and large 5/1:
 - E_t(jet)>35, 25 GeV
 - **½**,>55 GeV

Light Stop-Quark: Result

- Data consistent with background estimate
 - Observed: 11
 - Expected: 8.3^{+2.3}_{-1.7}
- Main background:
 - Z+ jj -> vvjj
 - W+jj -> τvjj
- Systematic error large: ≈30%
 - ISR/FSR: 23%
 - Stop cross section: 16%
- Not quite yet sensitive to MSugra cross section

Stop Candidate event

Quasi-stable Stop Quarks

Model:

- any charged massive particle (e.g. stop, stau) with long lifetime: "quasistable"
- Assume: fragments like b-quark

Signature

- Use Time-Of-Flight Detector:
 - $R_{TOF} \approx 140 \text{ cm}$
 - Resolution: 100ps
- Heavy particle=> v<<c</p>
- $\Delta t_{TOF} = t_{track} t_{event} = 2-3 \text{ ns}$
- Result for Δt_{TOF} >2.5 ns:
 - expect 2.9±3.2, observe 7
- σ<10-20pb at m=100 GeV
 </p>
- M(+)>97-107 GeV @ 95%C.L.

GMSB: YY+E+

- Assume χ^{0}_{1} is NLSP:
 - Decay to G+γ
 - \widetilde{G} light M~O(1 keV)
 - Inspired by CDF $ee_{\gamma\gamma}+E_{\tau}$ event: now ruled out by LEP
- D0 (CDF) Inclusive search:
 - 2 photons: E_t > 20 (13) GeV
 - E_t > 40 (45) GeV

	Exp.	Obs.	Μ (χ ⁺ ₁)
D0	2.5±0.5	1	>192 GeV
CDF	0.3±0.1	0	>168 GeV

Indirect Search: B_s->μμ

- BR(B_s-> $\mu\mu$):
 - SM: 3.5 x 10⁻⁹ (G. Buchalla, A. Buras Nucl. Phys. B398, 285)
 - SUSY: ∝tan⁶β (G. Kane et al., hepph/0310042)
- Selection:
 - 2 muons, displaced vertex
 - Topological cuts

Indirect Search: B_s->μμ

BR($B_s \rightarrow \mu\mu$):

 SM: 3.5 x 10⁻⁹ (G. Buchalla, A. Buras Nucl. Phys. B398, 285)

 SUSY: ∝tan⁶β (G. Kane et al., hepph/0310042)

- Selection:
 - 2 muons, displaced vertex
 - Topological cuts

	D0	CDF
expected	3.7±1.1	1.1±0.3
observed	4	1
BR@90% C.L.	<5.0×10 ⁻⁷	<7.5X10 ⁻⁷

- CDF&DO (M. Herndon):
 - BR(B_s->μμ)<2.7X10⁻⁷@90%*C*.L.

Bs->μμ vs DM cross section

Less than, within, Greater than 2 σ of WMAP, $g^{10^{-7}}$ (Baek et al.: hep-ph0406033) $g^{10^{-8}}$ $tan \beta = 10$

- Probe SUSY parameter space consistent with WMAP data:
 - mSUGRA: just touching...
 - SO10-models (Dermisek et al. hep/ph-0304101) => already constraining
- Bs->μμ complementary to direct
 DM detection experiments

$$M_0 = 300 \text{ GeV}, A_0 = 0$$

High Mass Dileptons and Diphotons

Standard Model high mass production:

New physics at high mass:

- Resonance signature:
 - Spin-1: Z'
 - Spin-2: Randall-Sundrum (RS) Graviton
 - Spin-0: Higgs

- Tail enhancement:
 - Large Extra Dimensions: Arkani-Hamed, Dimopoulos, Dvali (ADD)
 - Contact interaction

Neutral Spin-1 Bosons: Z'

- 2 high-Pt electrons, muons, taus
- Data agree with BG (Drell-Yan)
- Interpret in Z' models:
 - E6-models: ψ, η, χ, Ι
 - SM-like couplings (toy model)

Neutral Spin-1 Bosons: Z'

95% C.L. Limits for SM-like Z' (in GeV):

	ee	μμ	ττ
CDF	>750	>735	>395
D0	>780	>680	-

Combined CDF limit: M(Z')>815 GeV/c²

Randall-Sundrum Graviton

- Analysis:
 - D0: combined ee and yy
 - CDF: separate ee, μμ and γγ
- Data consistent with background
- Relevant parameters:
 - Coupling: k/M_{Pl}
 - Mass of 1st KK-mode
- World's best limit from DO:
 - \blacksquare M>785 GeV for k/M_{PI}=0.1

Dirac Magnetic Monopole

Durham, 11/1

High E_t Jets: k_t-Algorithm

- High Et excess/new physics, constrain high-x gluon
- This time with k_t-algorithm!

Will improve syst. Error on jets before publishing

Summary and Outlook

Run II is running at full speed:

- Machine and experiments running great
- Often already world's best constraints 🗟 80.4
- Have got 2x more data on tape!
- Anticipate 1.5-2 fb⁻¹ by 2007 and
 4.4-8.6 fb⁻¹ by 2009

Results:

- Cross sections all agree well with predictions
- Improved top and W mass measurements very soon
- Many searches ongoing: higgs, SUSY, LED,...
- It's a lot of fun these days!

Backup Slides

Di-Photon Cross Section

- Select 2 photons with $E_t>13$ (14) GeV
- Statistical subtraction of BG (mostly $\pi^0 \rightarrow \gamma\gamma$)

- Data agree well with NLO
- PYTHIA describes shape (normalisation off by factor 2)

$p\overline{p}\rightarrow bbA\rightarrow bbbb$

DZero Run II Limit; March 2004 Using $\underline{130~\mathrm{pb}^{-1}}$

CDF Run I Limit; October 2000 Using 91 pb^{-1}

Why D0 so much worse with more data???

pp-> bbA ->bbbb

DZero Run II Limit; March 2004 Using $\underline{130 \text{ pb}^{-1}}$

Used CTEQ5L

CDF Run I Limit; October 2000 Using 91 pb^{-1}

CTEQ3L 3 times larger acceptance x cross section!

W/Z cross sections: D0 versus CDF

- D0 vs CDF result:
 - Incompatible in Z->μμ channel
 - Otherwise in agreement but higher
 - Luminosity error ≈50% correlated

	CDF (pb)	D0 (pb)	NNLO (pb)
Z->ee	255.8±3.9±5.5±15.4	264.9±3.9±9.9±17.2	251.3±5.0
Ζ-> μμ	248.0±5.9±7.6±14.9	329.2±3.4±7.8±21.4	251.3 ±5.0
W->ev	2780±14±60±167	2865±8±63±186	2687 ±54
W->μν	2768±16±64±166	-	2687 ±54

Need better understanding of origin of difference

W and Z cross sections: Luminosity Monitor for LHC/Tevatron?

CDF 2 measurements: 2% precision

ľ		CDF (pb)	NNLO(pb)
	Z	254.3±3.3(st.)±4.3(sys.)±15.3(lum.)	251.3±5.0
	W	2775±10(st.)± 53(sys.)± 167(lum.)	2687±54

 NNLO uncertainty also better than 2% (MRST+ L. Dixon)

- NLO not good enough: 4% lower
- Impressive agreement between data and theory: can we use this to measure lumi now to 3%?
- Dominant exp. error due to W/Z rapidity distribution: PDF's...

hep-ph/0308087

W and Z Cross Sections: Summary

PDF errors in W/Z Production

- Cross section uncertainty factor5 larger than acceptance errors
- But acceptance uncertainty largest experimental error
- W and Z highly correlated:
 - Achieving better precision (1%) on ratio $\sigma(W)/\sigma(Z)$:

$$R = \frac{\sigma(p\overline{p} \to W \to | v)}{\sigma(p\overline{p} \to Z \to ||)} = 10.93 \pm 0.15(stat) \pm 0.13(sys)$$

- electron channel better than muon channel:
 - Larger acceptance due to usage of forward calorimeter

PDF error estimate using CTEQ6

Use analytical cross section expression (LO) to calculate do/dy:

$$\frac{d\sigma_W}{dy} = K \frac{2\pi G_F}{3\sqrt{2}} x_a x_b u(x_a) d(x_b)$$
with $x_{a,b} = \frac{M_W}{\sqrt{s}} \exp(\pm y)$.

- Integrate for 40 eigenvectors from CTEQ and fold in parametrised experimental acceptance
- Compare also to MRST central fit (MRST error sets give factor 2 smaller uncertainty)
- Plot versus boson rapidity

More CTEQ6 PDF errors

- ➤ 11-16 seem most important: can they be constrained better?
- Excellent tool setup to understand real behaviour (not limited by MC statistics)

Syst. Error on W mass due to PDF's

40 eigenvectors of CTEQ6 give "90% CL" (J. Huston), i.e. 1.64 σ

Error calculation: =1/2 $\sqrt{\Sigma(\Delta M_W(+) - \Delta M_W(-))^2}$ 1.64=15 MeV

Mass

- Data agree well with prediction: no sign of any signal of high mass
- $M_T(|\gamma,\nu)>90$ GeV / $M(||\gamma)>100$ GeV sensitive to TGC's
- Can be used to constrain e.g. W* and Z*

Acceptance versus Rapidity

Reducing syst. Error by extending measurements to forward region (or restricting rapidity range?)

Luminosity Perspectives

CDF: COT Aging Problem Solved!

- Gaseous tracking chamber COT: wire aging problem seen in 2003-2004
- hydrocarbon residue detected on sense wires where gain had been falling
- · addition of air (probably the oxygen) reverses the aging
- Chamber gains back go pre-aged status
- · Voltages reduced on inner superlayers from February to May 2004

Silicon Performance

See talk by R. Wallny

CDF: B-tagging and tracking

Requirement	Efficiency	Requirement	Efficiency
$N_{r_{\varphi}} \geq 3$	94%	$N_z \ge 3$	80%
$N_{r_{\varphi}} \geq 4$	90%	$N_z \ge 4$	61%
$N_{r_{\phi}} = 5$	46%	$N_z = 5$	26%

See talk by R. Wallny

$Z' \rightarrow \tau \tau$

- τ's challenging at hadron colliders:
- τ signals established by CDF & DO: W-> τv , Z-> $\tau \tau$
 - 1- and 3-prong seen
- Result for m_{vis}>120 GeV:
 - Observe: 4 events
 - Expect: 2.8±0.5
- M(Z')>395 GeV
- Ruled out by ee and μμ channel for SM Z' => explore other models with enhanced τ couplings

RPV Neutralino Decay

- Model:
 - R-parity conserving production => two neutralinos
 - R-parity violating decay into leptons
 - One RPV couplings non-0: λ_{122} , λ_{121}
- Final state: 4 leptons +E_t
 - 🍍 еее, ееџ, µµе, µµµ
 - 3rd lepton P_t>3 GeV
 - Largest Background: bb
- Interpret:
 - M_0 =250 GeV, $tan\beta$ =5

	Obs.	Exp.
eel (l=e,µ)	0	0.5±0.4
μμΙ (I=e,μ)	2	0.6+1.9-0.6

